7
Competing risks and selection

7.1 Censoring in follow-up studies

Up to this point we have lumped all the different reasons for censoring
together. In this chapter we look at this practice more carefully and make
a distinction between censoring due to practical difficulties in maintaining
follow-up (such as migration, refusal to participate further and so on), and
censoring due to competing causes of failure.

The first class of events causes removal of a subject from observation,
but after censoring the subject is still at risk of failure — a subject does
not cease to run the risk of a myocardial infarction simply because he or
she has ceased to participate in a follow-up study. Such observations are
censored in the sense that this later experience is removed from our view.
The second class of censoring events also causes removal of a subject from
observation, but this time the subject is no longer at risk from the failure of
interest. This is obviously true when a subject dies from a competing cause,
but onset of a non-fatal competing disease can also remove a subject from
the risk under study. For example, in a study of myocardial infarction in
previously healthy subjects, a subject who suffers the onset of lung cancer
would be considered as no longer at risk — although patients with lung
cancer suffer myocardial infarctions quite frequently, the aetiology is so
different as to be regarded as a different type of event.

7.2 Competing causes

The termination of follow-up by a competing cause is not due to imperfec-
tion of any one study, but is intrinsic to all imaginable studies. The binary
model which underlies the measurement of disease frequency by rates and
risks assumes only one type of failure. To allow for more than one type,
the model must be extended. Fig. 7.1 illustrates a model with two causes
of failure over a single study period of fixed duration. There are now three
possible outcomes, labelled F1 and F2 for the two types of failure and S
for survival. The probabilities of F1 and F2 are referred to as w; and 7o,
so the probability of survival is 1 —m — 2. In incidence studies, 7, and
79 Tepresent cause-specific failure probabilities or risks.

It is easy to use likelihood to estimate the parameters and mp. If N
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Fig. 7.1. Two causes of failure

subjects are studied and we observe D; failures of the first type and D,
failures of the second type, the likelihood is

(ﬂ_l)Dl (7T2)D2 (1 — 771 _ 7T2)N_D1_D2

?

and the log likelihood is
* Dylog(m) + D2 log(mg) + (N — Dy — Dy)log(1 — 1y — 72).

This takes its maximum value when 7; = D; /N and 79 = Dy /N so that the
most likely values correspond with the intuitive measures — the proportions
of subjects failing due to each cause.

Exercise 7.1. In a 5-year follow-up study of 1000 subjects, 27 suffered myocar-
dial infarctions during the study period while 8 suffered strokes. (If any subject
suffered both events, only the first was counted.) Estimate the cause-specific risks
for these conditions. If myocardial infarctions and strokes are grouped together
as ‘cardiovascular events’, what is the estimated risk of a cardiovascular event?

Fig. 7.2 illustrates the extension of this model to describe observation
of a subject through several consecutive bands. Superscripts denote band
and subscripts continue to indicate the type of failure. As in the case of a
single cause, the m parameters are defined as conditional probabilities. For
example, 3 represents the probability of failure F1 during the third band,
conditional upon survival through all preceding bands. The log likelihood
behaves as if the time bands form separate studies involving different groups
of subjects, so for each band the cause-specific failure probabilities are
estimated by the proportion of those subjects at risk during the band,
failing from the specified cause.

Exercise 7.2. The conditional probabilities of F1 and F2 remain constant at 0.1
and 0.2 respectively over three bands. List the 7 possible outcomes and calculate
their probabilities.
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Fig. 7.2. Consecutive time bands

Table 7.1. Log likelihood contributions for a subject during one click

Outcome Log likelihood

F1 log A1 + logh
F2 log A2 +logh
S —(A1+ A2)h

7.3 Cause-specific rates

The same argument can be extended to rates by dividing the time st_:a.le
into clicks, Fig. 7.1 now represents the possible outcomes for one subject
during a single click. The conditional failure probabilities are

71 = Aih, T2 = A2h,
where h is the duration of a click and A1 and As are cause-specific ratc?s —
conditional probabilities per unit time. Because the probabilities of failure
are very small, we can make the approximation
log(l —m — 7T2) =M — My = —()\1 + )\z)h,
and the contributions to the log likelihood of a single subject during a
single click are then those shown in Table 7.1. The total log likelihood is

obtained by summing such terms over subjects and over clicks. There are
Dy clicks which result in failure of type F1 and these contribute a total of

D, log(A1) + Dy log(h)
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to the log likelihood. Since the second term does not depend upon pa-
rameters it can be ignored. Similarly the Dy failures of type F2 contribute
Ds log(A2). Because every subject, regardless of eventual outcome, survives
all the clicks save the last, the sum of all of these log likelihood contribu-
tions over both subjects and clicks is

S —(a+ Xk = =1 + A,

where Y is the total person-time of observation of the cohort. The grand
total of all these contributions to the log likelihood is

Dy log(A1) + D2 log(A2) — (A1 + A2)Y.
A minor rearrangement of this expression leads to
Dylog(M) — MY + Dzlog(hz) — ALY

so that the log likelihood is the sum of two parts, both Poisson in form, the
first referring to F1 and the second to F2. The fact that the log likelihood
falls into two distinct parts, one for each cause, justifies the standard prac-
tice of analyzing each cause separately, allowing for competing causes only
in that they curtail further observation. The argument is easily generalized
to allow for more than two causes.

7.4 Interpreting cause-specific rates

There has been some controversy as to whether the practice of estimating
cause-specific rates in this way requires us to assume independence of causes
— an assumption which might often not be justified. In fact, the split of the
log likelihood into a sum of separate parts, one for each cause-specific rate,
does not arise as a result of any assumption of independence of causes,
but out of the way cause-specific rate parameters are defined. The rate
for cause 1 is defined as the probability per unit time of failure due to
cause 1, conditional upon the subject having previously survived all causes
of failure. This quantity is not truly specific to one cause. Influences which
directly influence one cause can, because of this, have an indirect affect on
rates for another cause. The term cause-specific is misleading. For exam-
ple, it is likely that myocardial infarction and stroke compete for the same
high risk subgroup of the population: those with advanced atherosclerosis.
A preventive measure which reduced the incidence rate of myocardial in-
farction without reducing the prevalence of atherosclerosis would result in
an increase in the rate of stroke, since more of the atherosclerotic group
would survive to be at risk from stroke.
It is a common practice to apply the formula,

log(Cumulative survival probability) = —Cumulative rate.
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Fig. 7.3. Elimination of cause F2

to the cumulative cause-specific rate to calculate a cause-specific survival
probability, interpreted as the probability of survival which would be ob-
served if all other causes of failure were eliminated. However, this interpre-
tation does depend on the assumption that the different causes.of failure
are independent. This is illustrated in Fig. 7.3. If the causes are inde-
pendent, subjects who would have failed failed due to F2 have exactly the
same conditional probabilities of failure due to F1 as those who would
not. Under these circumstances, elimination of cause F2 will have no ef-
fect on the subsequent rate for F1, and the exponential function of minus
the cumulative cause-specific rate for F1 can be interpretated as a survival
probability when cause F2 is eliminated. More generally we might expect
elimination of other causes to have an effect on the rate for the remaining
one and the cumulative cause-specific rate will then have no such inter-
pretation. Since the independence of different causes is usually untestable,
it is best to avoid such interpretations and to leave estimates of cumu-
lative cause-specific failure rates, calculated by the modified life table or
Aalen—Nelson method, without converting them to cumulative probabili-
ties of survival. Conversely, if the actuarial life table and Kaplan—-Meier
methods of Chapter 4 are applied to cause-specific failure probabilities, the
resulting ‘survival probability’ should™»e transformed to a cumulative rate
by taking minus its logarithm.

7.5 Selection bias Vs

'//
We now turn to the other reasons for censoring in follow-up studies. The
statistical theory is exactly the same as for competing causes — we simply
relabel the two causes as failure and loss to follow-up (Fig. 7.4). However,
the question of dependence between failure and censoring takes on a new
significance, because censoring arises as a result of the imperfection of
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Fig. 7.4. Loss to follow-up

real studies, rather than unavoidable biological realities. We would like to
estimate what would have happened in an ideal study in which no censoring
occurred, but in order to do this we need to assume that censoring and
failure are independent. More precisely, this means that that those lost
to follow-up due to censoring must have the same probabilities of failure
in later bands as those remaining under observation. If this is the case,
censoring is said to be non-informative. If not, the study results will be
subject to selection bias.

A well known example of selection bias due to censoring arises in clinical
trials when patients become so ill that their clinicians are unable ethically
to maintain them on a randomized double blind protocol. The randomiza-
tion code is then broken and the clinician is free to modify the treatment
as necessary. If observation of such patients is regarded as censored at
this point, the analysis is seriously biased, because these patients have a
worse prognosis than those remaining in the trial. It will almost always be
preferable to continue the follow-up of these patients and to analyze the
data according to the initial treatment assigned. This is known as analysis
by intention to treat.

Similar considerations apply when there is late entry to follow-up stud-
ies. Ideally, subjects should be recruited at the starting point for the failure
process under study. This is usually the case in clinical epidemiology, where
patients are recruited into the study at diagnosis, the natural starting point
for a prognostic study. In many epidemiological studies, however, subjects
are recruited some time after the natural starting point (see Fig. 7.5) This

is known as late entry; it can introduce further selection bias if the new sub- -

jects have different subsequent probabilities of failure from the survivors
they- join. For example, clinical follow-up studies are frequently carried
out in cohorts initially recruited from patients under treatment in a group
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Fig. 7.5. Selection due to loss and late entry

of participating hospitals when the study starts. These cohorts are then
extended by addition of new patients as they are diagnosed. When carry-
ing out analyses of survival times from diagnosis, the initial members of
such a cohort are late entries, because their diagnosis preceded their entry
into the study. This introduces possibilities for selection bias, because the
initia] cohort could include patients diagnosed elsewhere, but would omit
patients diagnosed in the participating hospitals and referred elsewhere for
treatment.

In epidemiological studies of the causes of disease, late entry is almost
universal and we must be careful that it does not introduce bias. An ex-
ample of bias arising this way is the healthy worker effect, so called because
of the widespread empirical finding that occupationally recruited cohorts
have lower mortality than general population rates would suggest. This
arises partly because of selective recruitment into occupations but mainly
because early retirement and job changes in response to ill health act to
prevent entry of ‘unhealthy’ workers into the cohort. The ideal study would
recruit subjects on entry to the occupation, but in practice the subjects ac-
tually recruited are those in employment on a particular date. Follow-up
then starts on that date. Factors such as early retirement, and job changes
in response to ill health, can operate in the period between joining the
occupation and recruitment to prevent entry of unhealthy workers into the
cohort.

The phenomenon of late entry is closely related to the distinction some-
times ddewn between ‘closed’ cohorts (in which only failures and censoring
can occur) and ‘dynamic’ cohorts, which can be refreshed by new entrants.
This distinction implies that being closed or dynamic is a property of the
cohort, but this is incorrect. The occurrence or non-occurrence of late entry
is not a property of the cohort, but depends on the time scale chosen for
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analysis. If survival is analyzed by time in study there are no late entries,
but in an analysis of the same study by age, or by time since entering an
occupation, there will be late entries.

Sclutions to the exercises =

7.1  The estimated 5-year risk of myocardial infarction is 27/1000 while

that for stroke is 8/1000. The risk of a cardiovascular event is 35/1000.

7.2  The outcomes and their probabilities are listed below.

Outcome Probability
Band 1
F1 0.1
F2 0.2
Band 2 .
F1 ' 0.7 x 0.1 = 0.07
F2 0.7x0.2=0.14
Band 3

F1 0.7 x 0.7 x 0.1 = 0.049
F2 0.7 x 0.7 x 0.2 = 0.098
S 0.7 x 0.7 x 0.7 =0.343
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